
AN870
An SNMP Agent for the Microchip TCP/IP Stack
INTRODUCTION

Simple Network Management Protocol (SNMP) is an
Internet protocol that was originally designed to man-
age different network devices, such as file servers,
hubs, routers and so on. It can also be used to manage
and control an ever increasing number of small embed-
ded systems connected to one another over any IP net-
work. Systems can communicate with each other using
SNMP to transfer control and status information, creat-
ing a truly distributed system. Unlike more familiar
human-oriented protocols like HTTP, SNMP is
considered a machine-to-machine protocol.

This application note provides one of the key compo-
nents of the SNMP management system: the SNMP
Agent that runs on the managed device. The simple
Agent presented here is designed to run on Microchip’s
PICmicro® microcontrollers, and is implemented using
services provided by the free Microchip TCP/IP Stack.
Its main features include:

• Based on the free Microchip TCP/IP Stack
• Portable across all PIC18 family of microcontrollers
• Functions independently of RTOS or application

• Supports both Microchip’s MPLAB® C18 and
Hitech PICC 18™ C compilers ‘out of the box’

• Supports SNMP Version 1 over UDP
• Supports Get, Get-Next, Set and Trap PDUs
• Supports up to 255 dynamic OIDs and unlimited

constant OIDs
• Supports sequence variables with 7-bit index

• Supports enterprise-specific Trap with one
variable information

• Handles access to constant OIDs automatically
• Utilizes a Management Information Base (MIB) that

can be stored internally or on external EEPROM
• Includes its own PC-based MIB compiler
• Does not contain built-in TCP/UDP/IP statistics

counters. User application must define and
manage required MIB.

This document briefly describes the SNMP protocol
just enough to explain the implementation and design
of the SNMP Agent. Interested readers are encouraged
to refer to RFC 1157 and related documents for more
detailed information about the protocol. Users are also
strongly encouraged to download and review Microchip

application note, AN833 “The Microchip TCP/IP Stack”.
The Stack and its accompanying software tools, partic-
ularly the MPFS builder, are prerequisites for creating
the SNMP Agent.

PREVIEW: HOW TO BUILD THE SNMP
AGENT

For those who are already familiar with SNMP and the
Microchip Stack, we will start by outlining the process
for incorporating the SNMP Agent into an application. If
you need to familiarize yourself a little more with SNMP
first, refer to the overview that starts on page 3.

The flow chart in Figure 1 outlines the general steps for
developing a Microchip SNMP Agent. There are two
main processes involved: developing the MIB, and
using that to develop the actual agent. Each process,
in turn, has several steps. All of these are covered later
in this document.

The major steps are:

1. Download and install the accompanying source
files for the SNMP Agent.

2. Using the MIB script (page 22), define your
private MIB along with other standard MIB that
your application may require.

3. Use the included MIB compiler (“mib2bib”,
page 29) to build a binary MIB image (“BIB”).

4. Include the generated BIB file into an MPFS
image, and either download or link the MPFS
image data file.

5. Create an application project that contains all of
your required files, plus the following Microchip
TCP/IP Stack and SNMP Agent files:

• MAC.c

• ARP.c

• ARPTsk.c

• IP.c

• UDP.c

• SNMP.c

• StackTsk.c

• MPFS.c

• Xeeprom.c or MPFSImg.c

• Helpers.c

• Delay.c

Keep in mind that you may have to include other
Microchip files depending on the other modules
that you select.

Author: Nilesh Rajbharti
Microchip Technology Inc.
 2003 Microchip Technology Inc. DS00870A-page 1

AN870
6. Modify your main application source file to
include the SNMP header files and the MIB def-
inition file, and implement the SNMP callback
functions. Use one of the included demo SNMP
application files (page 33) as a reference for
making any necessary modifications.

Once successfully built, you can use any standard
SNMP Management Software to access your SNMP
Agent device.

FIGURE 1: OVERVIEW OF THE SNMP AGENT DEVELOPMENT PROCESS

MIB Text File

Microchip
MIB Compiler

(mib2bib)
MPFS Builder

Binary MIB File
(.bib)

MPFS Image
(binary or C)MIB .inc File

Processor
Compiler

Complete
Application

OR

MPFS Data File
(C language)

MPFS Image
(binary or C)

MIB Development

SNMP Agent Development

Application Source

Files

Web Page Files
(optional)

Microchip
TCP/IP Stack

Files
DS00870A-page 2  2003 Microchip Technology Inc.

AN870
SNMP OVERVIEW

SNMP is an application layer communication protocol
that defines a client-server relationship. Its relationship
to the TCP/IP protocol Stack is shown in Figure 2.

SNMP describes a standard method to access vari-
ables residing in a remote device. It also specifies for-
mat in which this data must be transferred and
interpreted. Once a device is SNMP enabled, any
SNMP compatible host system can monitor and control
that device.

FIGURE 2: LOCATION OF SNMP IN THE TCP/IP PROTOCOL STACK

SNMP Terminology

This application note frequently uses terminology
described by the SNMP specification which we will
review here briefly. Figure 3 shows the typical SNMP
model and the associated terminology.

NETWORK MANAGEMENT STATION (NMS)

The NMS is one half of the SNMP client-server setup;
the other half being the agent. Because our focus in
this document is on the agent, we mention NMS here
briefly for the sake of completeness.

Typically, the NMS is a personal computer running
special software, although it could very well be any
other embedded device. NMS acts as an SNMP client,
periodically polling the SNMP Agent for data.

Once a device is SNMP enabled, any commercially or
non-commercially available NMS software can be
used. NMS can be used to monitor the collection of
similar or dissimilar devices. Many of the commercially
available PC-based NMS systems provide a graphical
representation of managed devices. Also, the addition
of devices to a network does not require change in
NMS software; it can dynamically load information
about a new device and can provide the option to man-
age that device. All of these features give SNMP the
functionality that makes it a popular choice for network
and device management.

FIGURE 3: OVERVIEW OF THE SNMP MODEL

DHCP SNMP HTTP FTP

UDP TCP

IP ICMP

PPP SLIP ARP

Modem USART Ethernet

Application Layer

Transport Layer

Internet Layer

Network Access

Physical Layer

Embedded Device

Network Device

Data

Data

Data

Network Monitored device

Management
Protocol

Managed Nodes Management
Information

Base

Network
Management

Station

SNMP
Client

Network
SNMP over
 2003 Microchip Technology Inc. DS00870A-page 3

AN870
MANAGED NODE OR SNMP AGENT

A Managed Node (or SNMP Agent, as it is very often
called) is the device that is being managed by NMS.
The SNMP Agent implements the server portion of the
SNMP protocol, acting as the agent between the
device application and the NMS software. The relation-
ship is not necessarily one-to-one, as a single agent
can simultaneously serve data to many NMSs. The
agent waits for NMS requests and responds with the
appropriate information.

MANAGEMENT INFORMATION BASE (MIB)

Each SNMP Agent manages its own special collection
of variables, called a Management Information Base
(MIB). To organize the MIB, SNMP defines a schema
known as the Structure of Management Information
(SMI).

Figure 4 shows a generic SMI. The MIB is structured in
a tree-like fashion, with one root at the top of the tree
and one or more children below the root. Each child

may contain one or more children of its own, thus cre-
ating an entire tree. The bottom-most nodes that do not
have any children are called Leaf Nodes. These nodes
contain the actual data.

SNMP and other RFC documents for the Internet
define several MIBs. Figure 5 shows a subtree of the
actual MIB for the Internet. Subtrees, such as “system”,
“udp” and “tcp”, are standard MIBs that are defined by
specific RFC documents. These and other standard
MIBs should not be modified if the SNMP Agent needs
to be compatible with other NMS software.

A special subtree, called “enterprise”, is defined for pri-
vate enterprises. Any SNMP Agent device manufac-
turer may obtain its own private enterprise number.
Once assigned, the manufacturer may add or remove
any number of subtrees beneath it as they may require.
Private enterprise numbers may be obtained by apply-
ing to IANA (Internet Assigned Number Authority).
Applications can be made at their web site,
www.iana.org/cgi-bin/enterprise.pl.

FIGURE 4: GENERIC STRUCTURE OF MANAGEMENT INFORMATION (SMI)

Variable1

Variable2 Variable3 Variable4

Variable6 Variable7

Variable5

Root

Object Identifier

Leaf
DS00870A-page 4  2003 Microchip Technology Inc.

AN870
FIGURE 5: EXAMPLE OF AN ACTUAL SMI (PARTIAL INTERNET SUBTREE)

OBJECT IDENTIFIER (OID)

Each node in the MIB tree is identified by a sequence
of decimal numbers called an Object Identifier (OID). A
specific node is uniquely referenced by its own OID and
that of its parents’ OIDs. Such OID is written in
“dotted-decimal” notation, similar to those used by IP
addresses but not limited to four levels. For example,
the OID for the system node in Figure 5 is written as
‘1.3.6.1.2.1’. For the convenience of readers, an OID
is frequently written with each node name and its OID
in parenthesis. Using this convention, the OID for
the system node can be rewritten as
“iso(1).org(3).dod(6).internet(1).mgmt(2).mib(1)”.

By virtue of OID assignments, the first number is always
either ‘1’ or ‘2’, and the second number is less than 40.
The first two numbers, a and b, are encoded as one byte
having the value 40a + b. For the Internet, this number is
43. As a result, the system OID is transmitted as
‘43.6.1.2.1’, not ‘1.3.6.1.2.1’.

Abstract Syntax Notation (ASN)
Language

Each MIB variable contains several attributes, such as
data type, access type and object identifier. SNMP
uses special language called Abstract Syntax Notation
version 1 (ASN.1) to describe detail about variables.
ASN.1 is also used to describe SNMP and other proto-
col data exchange format. ASN.1 is written as a text file
and compiled using an ASN syntax compiler. Most of
the NMS and SNMP Agent software are designed to
read ASN files and build MIB accordingly. An example
of a variable description in ASN.1 syntax is shown in
Example 1.

There are commercially available MIB builders that
allow users to build MIBs graphically without the need
to learn ASN syntax first. The Microchip SNMP Agent
uses its own special script to describe its agent OIDs,
as well as its own script compiler to create compact
binary representations of the MIB. The custom script
also allows the assignment of constant data to OIDs.
The Microchip MIB script and its compiler are
described in greater detail, starting on page 22.

internet (1)

directory(1) private(4)experimental(3)

root

iso(1)

system(1) tcp(6) ...

mib(1)

mgmt(2)

enterprises(1)

...

1.3.6.1.2.1

org(3)

dod(6)

1.3.6.1
OID of this Node:

OID of this Node:

Note: The Microchip SNMP MIB script dis-
cussed later in this document requires that
all SNMP OIDs start with ‘43’.
 2003 Microchip Technology Inc. DS00870A-page 5

AN870
EXAMPLE 1: TYPICAL ASN.1
DESCRIPTION OF A
VARIABLE

Binary Encoding Rules (BER)

SNMP uses ASN.1 syntax to describe its packet and
variable contents. ASN is an abstract syntax; that is, it
does not specify how the actual data is encoded and
transmitted between two nodes. A special set of rules,
called Binary Encoding Rules (BER), is used to encode
what is described by the ASN.1 syntax. BER is
self-contained and platform independent. Each data
item encoded with BER contains its data type, data
length and its actual value; this is in contrast to regular
data, where only the data content is given.

A data variable encoded by BER consists of a tag byte,
one or more length bytes and one or more value bytes.
The tag byte describes the data type associated with
the current data variable. The length byte(s) gives the
number of bytes used to describe data content. The
value bytes are the actual data content. Figure 6 shows
the breakdown of typical BER values and an example
of encoding.

It is not necessary for users to learn the encoding rules.
The SNMP Agent automatically handles encoding and
decoding of all supported data types.

FIGURE 6: GENERIC BER FORMAT
(TOP) AND AN EXAMPLE OF
BER ENCODING (BOTTOM)

Protocol Data Unit (PDU)

Data packets exchanged between two SNMP nodes
are called Protocol Data Units (PDU). SNMP Version 1
defines a total of five main types of PDUs:

• Get-request

• Get-Next-response

• Get-response

• Set-request

• Trap

All Get and Set PDUs share a common message for-
mat; the format for Trap PDUs is somewhat different.
The two formats are compared in Figure 7.

Users of the Microchip SNMP Agent do not need to
know the details of the PDU format or its encoding; the
SNMP Agent module automatically handles all of the
low level protocol details, including the encoding and
decoding of data variables. Those who are interested in
the details are encouraged to refer to RFC 1157 for
more information about the individual PDU fields.

FIGURE 7: PDU FORMATS FOR Get/Set AND Trap PACKETS

org OBJECT IDENTIFIER ::= { iso 3 }
dod OBJECT IDENTIFIER ::= { org 6 }
internet OBJECT IDENTIFIER ::= { dod 1 }
.
.
.
update OBJECT-TYPE

SYNTAX SEQUENCE OF UdpEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“A table containing...”
::= { udp 5 }

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1

Number Length ValueTag

2 1 5 8 to 8n 0 to n # of bits

Encoding the Integer Value ‘49’:

Tag Byte Length Byte(s) Value Byte(s)

Version

Com
m

unity

PDU Type

Request ID

Error Status

Error Index

nam
e1

value1

Get and Set PDU Format

Trap PDU Format

SNMP Header Get/Set Header Variables

nam
en

valuen
• • •

• • •

nam
e1

value1

nam
en

valuen
• • •

• • •

Enterprise

Agent Address

Trap Type

Code
Tim

e Stam
p

Trap Header Variables
DS00870A-page 6  2003 Microchip Technology Inc.

AN870
MICROCHIP SNMP AGENT APIs

The actual SNMP Agent is implemented by several
files working together with the Microchip TCP/IP Stack.
Like the other components of the Stack, the core of the
SNMP agent is implemented by a single file, snmp.c.
In addition, at least five other callback functions must
also be implemented to provide communication
between the SNMP module, the host application, and
the rest of the TCP/IP Stack.

The SNMP Agent also makes use of Application
Program Interfaces (APIs). These are well-defined
methods for communicating between applications and
the SNMP Agent, and are also designed to make
application design easier for the user.

There are a total of 10 functions associated with the
SNMP Agent. A complete description of their APIs
follows from here through page 21.

SNMPInit

This function is used to initialize the SNMP Agent module.

Syntax

void SNMPInit(void)

Parameters

None

Return Values

None

Pre-Condition

There must be at least one free UDP socket available and UDPInit is already called.

Side Effects

One UDP socket will be used.

Remarks

None

Example

// Do Stack manager Init. This will initialize UDPInit too.
StackInit();

// Initialize SNMP module
SNMPInit();

// Initialize other modules...
...
 2003 Microchip Technology Inc. DS00870A-page 7

AN870
SNMPTask

This function is the main state machine task. It handles all incoming SNMP packets, processes them for correct
operation and calls back the main application.

Syntax

BOOL SNMPTask(void)

Parameters

None

Return Values

TRUE, if SNMP state machine has completed its task; the Stack state machine can be changed.

FALSE, if otherwise.

Pre-Condition

SNMPInit() is already called.

Side Effects

An incoming SNMP packet is processed and acted upon. Packets are discarded after processed.

Remarks

None

Example

// Do Stack manager Init. This will initialize UDPInit too.
StackInit();

// Initialize SNMP module
SNMPInit();

// Initialize other modules...
...

// Enter into main loop
while(1)
{

// Main Microchip TCP/IP Stack task
StackTask();

// Call SNMP Task
SNMPTask();

// Call another Stack tasks...
...

}

DS00870A-page 8  2003 Microchip Technology Inc.

AN870
SNMPGetVar

This function is a callback used by the SNMP Agent module to request a variable value from the main application. If the
current OID is a simple variable, index will always be ‘0’. If the current OID is a sequence variable, index may be any
value from 0 through 127.

Syntax

BOOL SNMPGetVar(SNMP_ID var, SNMP_INDEX index, BYTE *ref, SNMP_VAL *val)

Parameters

var [in]

OID variable ID whose value is requested.

index [in]

Index of OID variable. index is useful when OID variable is of type sequence and NMS can query any of available
values.

ref [in/out]

Reference for multi-byte Get. ref is set to SNMP_START_OF_VAR (value of 0x00) to mark the beginning of a data
transfer. The application may read and set this parameter to keep track of a multi-byte transfer. When the multi-byte
data transfer is complete, the application must set ref to SNMP_END_OF_VAR.

val [out]

Pointer to a buffer of up to 4 bytes, depending on the data type of var:

If data type is BYTE, the application should copy value in val->byte.

If data type is WORD, the application should copy value in val->word.

If data type is DWORD, the application should copy value in val->dword.

If data type is IP_ADDRESS, the application may copy value in either val->dword or val->v[]
with the LSB being the MSB of the IP address.

If data type is COUNTER32, TIME_TICKS or GAUGE32, the application should copy value in
val->dword.

If data type is ASCII_STRING or OCTET_STRING, the application should copy value in val->byte,
one byte at a time. In this case, ref may be used to keep track of multi-byte transfer.

Return Values

TRUE, if a value exists for a given var at given index; data is copied in val.

FALSE, if otherwise.

Pre-Condition

None

Side Effects

None

Remarks

For a definition of the data types associated with val, refer to the DeclareVar description on page 23.
 2003 Microchip Technology Inc. DS00870A-page 9

AN870
SNMPGetVar (Continued)

Example

BOOL SNMPGetVar(SNMP_ID var, SNMP_INDEX index, BYTE *ref, SNMP_VAL* val)
{

BYTE myRef;
myRef = *ref;

switch(var)
{
case LED_D5: // LED D5 control variable.

val->byte = LED_D5_CONTROL; // Return LED D5 value
return TRUE;

case ANALOG_POT0: // 10-bit value of ADC
val->word = AN0Value.Val;
return TRUE;

case TRAP_COMMUNITY: // ASCII_STRING variables
// Make sure that given index is within our range.
// TRAP_COMMUNITY is part of larger table trapInfo
if (index < trapInfo.Size)
{

// If it is empty string, this is the end.
if (trapInfo.table[index].communityLen == 0)

*ref = SNMP_END_OF_VAR;
else
{

val->byte = trapInfo.table[index].community[myRef];

// Prepare for next byte transfer
myRef++;

// If we transferred all bytes, mark it as an end
if (myRef == trapInfo.table[index].communityLen)

*ref = SNMP_END_OF_VAR;
else

// Or else, set ref to track it.
*ref = myRef;

}
}
return TRUE;

}...

// All unknown variables are cannot be retrieved.

return FALSE;
}

DS00870A-page 10  2003 Microchip Technology Inc.

AN870
SNMPGetNextIndex

This function is a callback used by the SNMP Agent module to request next index after given index (if there is any).

Syntax

BOOL SNMPGetNextIndex(SNMP_ID var, SNMP_INDEX *index)

Parameters

var [in]

OID variable ID whose next index value is requested. Only var of type sequence is called with.

index [in/out]

Pointer to index of OID variable. The application should read the value pointed to by this pointer and update its
content with the next available index, if there is any. If there is none, there is no need to modify its content.

INDEX_INVALID if no index is given. In that case, the next index is the very first available index.

Return Values

TRUE, if next index exists after given index.

FALSE, if otherwise.

Pre-Condition

None

Side Effects

None

Remarks

This function is called for only sequence index variables. The application needs to handle only index type variables in
this callback.

Example

BOOL SNMPGetNextIndex(SNMP_ID var, SNMP_INDEX *index)
{

SNMP_INDEX tempIndex;
tempIndex = *index;

switch(var)
{
case TRAP_RECEIVER_ID:

// There is no next possible index if table itself is empty.
if (trapInfo.Size == 0)

return FALSE;
// INDEX_INVALID means start with first index.
if (tempIndex == SNMP_INDEX_INVALID)
{

*index = 0;
return TRUE;

}
// Next index is one more than current one but less than size of table.
else if (tempIndex < (trapInfo.Size-1))
{

*index = tempIndex+1;
return TRUE;

}
break;

}
return FALSE;

}

 2003 Microchip Technology Inc. DS00870A-page 11

AN870
SNMPIsValidSetLen

This function is a callback used by the SNMP Agent module to determine if a variable can be written with a specific
length of value. When NMS performs a Set-request operation, it supplies the new value. The SNMP Agent passes
the length of this value to the application and confirms that the current variable can hold the given length of data. If data
length is too long for the variable to handle, application returns FALSE and the SNMP Agent fails the current request.

Syntax

BOOL SNMPIsValidSetLen(SNMP_ID var, BYTE len)

Parameters

var [in]

OID variable ID whose Set capability is to be checked.

len [in]

Length of Set-request data as issued by NMS.

Return Values

TRUE, if given variable var is designed to handle given length len of data.

FALSE, if otherwise.

Pre-Condition

None

Side Effects

None

Remarks

This function is called for a dynamic OID with a READWRITE access attribute and ASCII_STRING or OCTET_STRING
data types only. For a definition of the READWRITE access type, refer to the DeclareVar description on page 23.

Example

BOOL SNMPIsValidSetLen(SNMP_ID var, BYTE len)
{

switch(var)
{
case TRAP_COMMUNITY:

 // Length must be less than our allocated memory.
if (len < MAX_COMMUNITY_LEN+1)

return TRUE;
break;

case LCD_DISPLAY:
// Similarly LCD length must be less than LCD capability.
if (len < LCD_DISPLAY_LEN+1)

return TRUE;
break;

}
return FALSE;

}

DS00870A-page 12  2003 Microchip Technology Inc.

AN870
SNMPSetVar

This function is a callback used by the SNMP Agent module to modify a dynamic OID variable whose access type is
READWRITE.

Syntax

BOOL SNMPSetVar(SNMP_ID var, SNMP_INDEX index, BYTE ref, SNMP_VAL val)

Parameters

var [in]

OID variable ID whose value needs to be modified.

index [in]

Index of OID variable var. If this is a simple variable, index will always be ‘0’. In other cases, application must
validate given index before using it.

ref [in]

Reference to track multi-byte Set.

The very first Set callback will contain SNMP_START_OF_VAR (0x00) and subsequent callbacks will contain
ascending ref values to indicate the index of byte being transferred. After transfer is complete, the value of
SNMP_END_OF_VAR will be passed to mark the end of transfer. The application should use this indication to update
local flags and values.

val [in]

Pointer to data value of up to 4 bytes, depending on the data type of var:

If data type is BYTE, the variable value is in val.byte.

If data type is WORD, the variable value is in val.word.

If data type is DWORD, the variable value is in val.dword.

If data type is IP_ADDRESS, the variable value is in val.v[] or val.dword.

If data type is GAUGE32, TIME_TICKS or COUNTER32, the variable value is in val.dword.

If data type is ASCII_STRING or OCTET_STRING, one byte of variable value is in val.byte.
A multi-byte transfer will be performed to transfer the entire data string.

Return Values

TRUE, if val is successfully written to the variable var.

FALSE, if otherwise.

Pre-Condition

None

Side Effects

None

Remarks

This function is called for a dynamic OID with the READWRITE access attribute. In the case of ASCII_STRING and
OCTET_STRING with more than one byte to Set, this function will be called multiple times to transfer up to 127 bytes
of data.

If given variable is of type simple, index will always be ‘0’.

For a definition of the data types associated with val, refer to the DeclareVar description on page 23.
 2003 Microchip Technology Inc. DS00870A-page 13

AN870
SNMPSetVar (Continued)

Example

BOOL SNMPSetVar(SNMP_ID var, SNMP_INDEX index, BYTE ref, SNMP_VAL val)
{

switch(var)
{
case LED_D5: // D5 is 8-bit control variable.

LED_D5_CONTROL = val->byte;
return TRUE;

case TRAP_RECEIVER_IP: // This is Sequence variable
// Make sure that index is within our range.

 if (index < trapInfo.Size)
 {

// This is just an update to an existing entry.
trapInfo.table[index].IPAddress.Val = val.dword;
return TRUE;

 }
 else if (index < TRAP_TABLE_SIZE)
 {

// This is an addition to table.
trapInfo.table[index].IPAddress.Val = val.dword;
// Create other empty entries.
trapInfo.table[index].communityLen = 0;

// Update table size.
trapInfo.Size++;
return TRUE;

}
break;

case LCD_DISPLAY:
// Copy all bytes until all bytes are transferred

 if (ref != SNMP_END_OF_VAR)
 {

LCDDisplayString[ref] = val.byte;
LCDDisplayStringLen++;

}
 else
 {

// Display it on the first line of the LCD
XLCDGoto(0, 0);
XLCDPutString(LCDDisplayString);

 }
return TRUE;
}

// All unknown variables cannot be Set.
return FALSE;
}

DS00870A-page 14  2003 Microchip Technology Inc.

AN870
SNMPValidate

This function is a callback used by the SNMP Agent module to ask the application if the given community is a valid string
for the given operation.

Syntax

BOOL SNMPValidate(SNMP_ACTION SNMPAction, char *community)

Parameters

SNMPAction [in]

SNMP action type. Possible values for this parameter are:

community [in]

Community string that was passed along with given action.

Return Values

TRUE, if the community is a allowed to perform a given operation.

FALSE, if otherwise.

Pre-Condition

None

Side Effects

None

Remarks

None

Example

ROM char PUBLIC_COMMUNITY[] = “public”;
#define PUBLIC_COMMUNITY_LEN (sizeof(PUBLIC_COMMUNITY)-1)

ROM char PRIVATE_COMMUNITY[] = “private”;
#define PRIVATE_COMMUNITY_LEN (sizeof(PRIVATE_COMMUNITY)-1)

BOOL SNMPValidate(SNMP_ACTION SNMPAction, char* community)
{

if (!memcmppgm2ram(community, (ROM void*)PUBLIC_COMMUNITY,
 PUBLIC_COMMUNITY_LEN))
{

if (SNMPAction == SNMP_GET)
return TRUE;

}
else if (!memcmppgm2ram(community, (ROM void*)PRIVATE_COMMUNITY,

 PRIVATE_COMMUNITY_LEN))
{

if (SNMPAction == SNMP_SET)
return TRUE;

}
return FALSE;

}

Value Meaning

SNMP_GET Get-request is being performed to fetch one or more variables

SNMP_SET Set-request is being performed to set one or more variables
 2003 Microchip Technology Inc. DS00870A-page 15

AN870
SNMPNotifyPrepare

This function is used by the application to prepare to send SNMP Trap to remote host.

Syntax

void SNMPNotifyPrepare(IP_ADDR *remoteHost,
 char *community,
 BYTE communityLen,
 SNMP_ID agentIDVar,
 BYTE notificationCode,
 DWORD timestamp);

Parameters

remoteHost [in]

Remote host IP address that needs to notified.

community [in]

Community string to use for this notification.

communityLen [in]

Length of community string.

agentIDVar [in]

OID ID that is already defined as Agent ID in Microchip MIB script.

notificationCode [in]

Notification code that is to be used in this notification – this is the “Trap Type”.

timestamp [in]

Time stamp (10 ms resolution) at which this notification event occurred.

Return Values

None

Pre-Condition

None

Side Effects

None

Remarks

This function is called at the beginning of notification. With this function call, the application transfers notification infor-
mation to the SNMP Agent module. To complete notification, the application must also call SNMPNotifyIsRead() and
SNMPNotify().
DS00870A-page 16  2003 Microchip Technology Inc.

AN870
SNMPNotifyPrepare (Continued)

Example

// This function is wrapper to send a notification to remote NMS
// as stored in local trap table.

static BOOL SendNotification(BYTE receiverIndex,
 SNMP_ID var,
 SNMP_VAL val)

{
static enum { SM_PREPARE, SM_NOTIFY_WAIT } smState = SM_PREPARE;
IP_ADDR IPAddress;

// Copy interested trap receiver IP address into local
// variable – in network order.
IPAddress.v[0] = trapInfo.table[receiverIndex].IPAddress.v[3];
IPAddress.v[1] = trapInfo.table[receiverIndex].IPAddress.v[2];
IPAddress.v[2] = trapInfo.table[receiverIndex].IPAddress.v[1];
IPAddress.v[3] = trapInfo.table[receiverIndex].IPAddress.v[0];

// Process to send notification must be written in co-operative
// multi-tasking fashion.
// Initial state prepares SNMP agent module by supplying
// necessary information.
switch(smState)
{
case SM_PREPARE:

 SNMPNotifyPrepare(&IPAddress,
 trapInfo.table[receiverIndex].community,
 trapInfo.table[receiverIndex].communityLen,
 MICROCHIP, // Agent ID Var
 6, // Notification code
 TickGet()); // Timestamp

smState = SM_NOTIFY_WAIT;
break;

case SM_NOTIFY_WAIT:
// Once notify prepare is done,
// wait for SNMP Agent to be ready.
if (SNMPIsNotifyReady(&IPAddress))
{

// Once it is ready, supply interested variable.
// In this version, only one variable
// can be sent per notification.
SNMPNotify(var, val, 0);
return TRUE;

}
}
return FALSE;

}

 2003 Microchip Technology Inc. DS00870A-page 17

AN870
SNMPNotifyIsReady

This function is used by the application to check whether the SNMP Agent is ready for a SNMPNotify() call.

Syntax

BOOL SNMPNotifyIsReady(IP_ADDR *remoteHost)

Parameters

remoteHost [in]

Remote host IP address that needs to notified.

Return Values

TRUE, if SNMP Agent is ready for SNMPNotify().

FALSE, if otherwise. The application should maintain a time-out counter and abort calling this function if it does not return
TRUE within the time-out value.

Pre-Condition

SNMPNotifyPrepare() is already called.

Side Effects

None

Remarks

This function performs ARP resolution and obtains the MAC address for a given IP address. Once ARP resolution is
complete, it returns TRUE and the application is free to call SNMPNotify() to actually notify the host.
DS00870A-page 18  2003 Microchip Technology Inc.

AN870
SNMPNotifyIsReady (Continued)

Example

// This function is wrapper to send a notification to remote NMS
// as stored in local trap table.
static BOOL SendNotification(BYTE receiverIndex,

 SNMP_ID var,
 SNMP_VAL val)

{
static enum { SM_PREPARE, SM_NOTIFY_WAIT } smState = SM_PREPARE;
IP_ADDR IPAddress;

// Copy interested trap receiver IP address into local
// variable – in network order.
IPAddress.v[0] = trapInfo.table[receiverIndex].IPAddress.v[3];
IPAddress.v[1] = trapInfo.table[receiverIndex].IPAddress.v[2];
IPAddress.v[2] = trapInfo.table[receiverIndex].IPAddress.v[1];
IPAddress.v[3] = trapInfo.table[receiverIndex].IPAddress.v[0];

// Process to send notification must be written in co-operative
// multi-tasking fashion.
// Initial state prepares SNMP agent module by supplying
// necessary information.
switch(smState)
{
case SM_PREPARE:

SNMPNotifyPrepare(&IPAddress,
 trapInfo.table[receiverIndex].community,
 trapInfo.table[receiverIndex].communityLen,
 MICROCHIP, // Agent ID Var
 6, // Notification code
 TickGet()); // Timestamp

smState = SM_NOTIFY_WAIT;
break;

case SM_NOTIFY_WAIT:
// Once notify prepare is done, wait for SNMP Agent to be ready.
if (SNMPIsNotifyReady(&IPAddress))
{

// Once it is ready, supply interested variable.
// In this version, only one variable
// can be sent per notification.
SNMPNotify(var, val, 0);
return TRUE;

}
}
return FALSE;

}

 2003 Microchip Technology Inc. DS00870A-page 19

AN870
SNMPNotify

This function is used by the application to transfer the variable that caused notification.

Syntax

BOOL SNMPNotify(SNMP_ID var, SNMP_VAL val, SNMP_INDEX index)

Parameters

var [in]

OID ID that is to be included in this notification.

val [in]

Value of var that is to be included in this notification.

index [in]

Index of OID ID that is to be included in this notification.

Return Values

TRUE, if remote host was successfully notified.

FALSE, if otherwise.

Pre-Condition

SNMPIsNotifyReady() = TRUE

Side Effects

None

Remarks

This function builds the SNMP Trap PDU and sends it to the previously specified remote host.

Only variables of the data types BYTE, WORD, DWORD, IP-ADDRESS, COUNTER32 and GAUGE32 can be used in
this function; in other words, only variables of these data types can generate notification. In addition, these variables
must be declared as dynamic.
DS00870A-page 20  2003 Microchip Technology Inc.

AN870
SNMPNotify (Continued)

Example

// This function is wrapper to send a notification to remote NMS
// as stored in local trap table.
static BOOL SendNotification(BYTE receiverIndex,

 SNMP_ID var,
 SNMP_VAL val)

{
static enum { SM_PREPARE, SM_NOTIFY_WAIT } smState = SM_PREPARE;
IP_ADDR IPAddress;

// Copy interested trap receiver IP address into local
// variable – in network order
IPAddress.v[0] = trapInfo.table[receiverIndex].IPAddress.v[3];
IPAddress.v[1] = trapInfo.table[receiverIndex].IPAddress.v[2];
IPAddress.v[2] = trapInfo.table[receiverIndex].IPAddress.v[1];
IPAddress.v[3] = trapInfo.table[receiverIndex].IPAddress.v[0];

// Process to send notification must be written in co-operative
// multi-tasking fashion.
// Initial state prepares SNMP agent module by supplying
// necessary information.
switch(smState)
{
case SM_PREPARE:

SNMPNotifyPrepare(&IPAddress,
 trapInfo.table[receiverIndex].community,
 trapInfo.table[receiverIndex].communityLen,
 MICROCHIP, // Agent ID Var
 6, // Notification code
 TickGet()); // Timestamp

smState = SM_NOTIFY_WAIT;
break;

case SM_NOTIFY_WAIT:
// Once notify prepare is done, wait for SNMP Agent to be ready.
if (SNMPIsNotifyReady(&IPAddress))
{

// Once it is ready, supply interested variable. – In this
// version, only one variable can be sent per notification.
SNMPNotify(var, val, 0);
return TRUE;

}
}
return FALSE;

}

 2003 Microchip Technology Inc. DS00870A-page 21

AN870
DESCRIBING THE MIB WITH
MICROCHIP MIB SCRIPT

Microchip’s SNMP Agent uses a custom script to
describe the MIB. This script is designed to simplify the
MIB definition and its integration with the main applica-
tion. The actual MIB used by the SNMP Agent is a
binary image created by the Microchip MIB to BIB
compiler (page 29).

Microchip MIB Script Commands

A Microchip MIB file is an ASCII text file consisting of
multiple command lines. Each command line consists
of a single command, starting with the dollar sign char-
acter (“$”), and one or more command parameters
delimited with commas and enclosed in parentheses.
Lines that do not start with a dollar sign are interpreted
as comments and are not processed by the compiler.
Commands must be written in a single line; they cannot
span multiple lines.

The MIB script language includes a total of five com-
mands, each having a specific syntax. Only one com-
mand, DeclareVar, is mandatory; the others are
optional depending on the application and the types of
information to be defined. In practice, at least one other
command will be used in defining an MIB. The syntax
of the script commands is explained on pages 23
through 28.

Example 2 shows part of a typical Microchip MIB file. In
this example, three separate items are being defined.
In the first script “paragraph”, a read only node is being
established at the OID of 43.6.1.2.1.1.5; it contains the
identifier string “Microchip SNMP Agent” as static
information.

In the second paragraph, a node with dynamic temper-
ature information is being established at the OID
of 43.6.1.4.1.1.17095.3.1. The variable called
“TempAlarm” is assigned an identifier of ‘1’.

In the final paragraph, a two-column data array is being
created with the variables DigInputs and
DigChannel; the variables themselves are located in
two separate nodes with neighboring OIDs. In addition,
DigChannel is being used as the index for the array.

EXAMPLE 2: PARTIAL LISTING OF A MICROCHIP MIB (TEXT) FILE
$DeclareVar(sysName, ASCII_STRING, SINGLE, READONLY, 43.6.1.2.1.1.5)
$StaticVar(sysName, Microchip SNMP Agent)

$DeclareVar(TempAlarm, BYTE, SINGLE, READWRITE, 43.6.1.4.1.17095.3.1)
$DynamicVar(TempAlarm, 1)

$DeclareVar(DigInputs, BYTE, SEQUENCE, 43.6.1.4.1.17095.16.1.1)
$DeclareVar(DigChannel, BYTE, SEQUENCE, 43.6.1.4.1.17095.16.1.2)
$SequenceVar(DigInputs, DigChannel)
$SequenceVar(DigChannel, DigChannel)
DS00870A-page 22  2003 Microchip Technology Inc.

AN870
DeclareVar

This command declares a single variable and all of its mandatory attributes.

Status

Mandatory

Syntax

$DeclareVar(oidName, dataType, oidType, accessType, oidString)

Parameters

oidName

Name of this OID variable. This name must be unique and must follow the ANSI ‘C’ naming convention; i.e., it must
not start with a number and must not contain special characters (‘&’, ‘+’, etc.). If this variable is declared to be
dynamic, the MIB compiler will define a ‘C’ define symbol using the variable name in the header file mib.h. The
main application includes this header file and refers to this OID using oidName.

dataType

Data type of this OID variable. Valid keywords are:

oidType

OID variable type. Valid keywords are:

AccessType

OID access type: Valid keywords are:

oidString

Full “dotted-decimal” string describing this variable. If this OID is part of the Internet MIB subtree, the first two OIDs,
iso(1).org(3), must be written as decimal ‘43’ (i.e., system OID will be written as ‘43.6.1.2.1.1’).

The OID string for all OID variables must contain the same root (i.e., if the first OID variable is declared with 43 as
a root node, all following variables must also contain 43 as a root node).

Keyword Description

BYTE 8-bit data.

WORD 16-bit (2-byte) data.

DWORD 32-bit (4-byte) data.

IP_ADDRESS 4-byte IP address data.

COUNTER32 4-byte COUNTER32 data as defined by SNMP specification.

GAUGE32 4-byte GAUGE32 data as defined by SNMP specification.

OCTET_STRING Up to 127 bytes of binary data bytes.

ASCII_STRING Up to 127 bytes of ASCII data string.

OID Up to 127 bytes of dotted-decimal OID string value. If any of the individual OID values
are greater than 127, the total number of allowable OID bytes will be less than 127.

Keyword Description

SINGLE If this variable contains single value.

SEQUENCE If this variable contains array of values. All variables with an oidType of SEQUENCE
must be assigned an “index” OID variable using the SequenceVar command.

Keyword Description

READONLY If this variable can only be read.

READWRITE If this variable can be read and written.
 2003 Microchip Technology Inc. DS00870A-page 23

AN870
DeclareVar (Continued)

Result

If compiled successfully, this command will create a new OID variable. This variable can be used as an OID parameter
in other commands, such as StaticVar, DynamicVar, or SequenceVar.

Pre-Condition

None

Examples

This command declares an OID variable named “sysName” as defined in the standard MIB subtree system:
$DeclareVar(sysName, ASCII_STRING, SINGLE, READONLY, 43.6.1.2.1.1.5)

This command declares an OID variable of type BYTE:
$DeclareVar(LED_D5, BYTE, SINGLE, READWRITE, 43.6.1.4.1.17095.3.1)
DS00870A-page 24  2003 Microchip Technology Inc.

AN870
StaticVar

This command declares a previously defined OID variable as static (i.e., OID containing constant data) and assigns
constant data to it.

Status

Optional; required only if the application needs to define static OID variables.

Syntax

$StaticVar(oidName, data, …)

Parameters

oidName

Name of OID variable that is being declared as a static. This oidName must have been declared by a previous
DeclareVar command.

data

Actual constant data for oidName. This data will be interpreted using the data type defined in the DeclareVar
command:

Result

If compiled successfully, this command will declare given oidName as a static OID. A static OID contains constant data
that is stored in the BIB. Static OIDs are automatically managed by the SNMP Agent module; the application does not
have to implement callback logic to provide data for this OID variable.

Pre-Condition

The given oidName must have been declared using previous DeclarVar command.

Examples

This command declares an OID variable named “sysName” as defined in the standard MIB subtree system:
$StaticVar(sysName, PICDEM.net running Microchip SNMP Agent)

These commands declare an OID variable named “sysID”:
$DeclareVar(sysID, OID, SINGLE, READONLY, 43.6.1.2.1.1.2)
$StaticVar(sysID, 43.6.1.4.1.17095)

These commands declare an OID variable of type MAC address:
$DeclareVar(macID, OCTET_STRING, SINGLE, READONLY, 44.6.1.4.1.17095.10)
$StaticVar(macID, 0, 1, 2, 3, 4, 5)

Data Type Format Requirement

BYTE, WORD, or DWORD Must be written in decimal notation.

IP_ADDRESS and OID Must be written in appropriate dotted-decimal notation for data type.

ASCII_STRING
Must be free-form ASCII string with no quotes. Commas, parentheses and
backslashes must be preceded by the backslash (“\”) as an escape character.

OCTET_STRING Must be written in multiple individual bytes separated by commas.
 2003 Microchip Technology Inc. DS00870A-page 25

AN870
DynamicVar

This command declares a previously defined OID variable as dynamic. A dynamic OID variable is managed by the main
application. The main application is responsible for providing or updating the value associated with this variable.

Status

Optional; required only if application requires dynamic OID variables.

Syntax

$DynamicVar(oidName, id)

Parameters

oidName

Name of OID variable that is being declared as a dynamic. It must have been declared by a previous DeclareVar
command.

id

Any 8-bit identifier value from 0 to 255. It must be unique among all dynamic OID variables. The main application
uses this value to refer to actual OID string defined by oidName.

Note: An OID variable of data type OID cannot be declared as dynamic.

Result

If compiled successfully, this command will declare given oidName as a dynamic variable. An entry will be created in
the header file mib.h file of the form:
#define oidName id

An application can refer to this dynamic OID by including the header “mib.h” in the source file that needs to refer to this
OID.

Pre-Condition

The given oidName must have been declared using previous DeclareVar command.

Example

These commands declare an OID variable named LED_D5 as a dynamic variable:
$DeclareVar(LED_D5, BYTE, SINGLE, READWRITE, 43.6.1.4.1.17095.3.1)
$DynamicVar(LED_D5, 5)
DS00870A-page 26  2003 Microchip Technology Inc.

AN870
SequenceVar

This command declares a previously defined OID variable as a sequence variable and assigns an index to it. A
sequence variable can consist of an array of values and any instance of its values can be referenced by index. More
than one sequence variable may share a single index creating multi-dimensional arrays. The current version limits the
size of the index to 7 bits wide, meaning that such arrays can contain up to 127 entries.

Status

Optional; required only if application needs to define sequence variables.

Syntax

$SequenceVar(oidName, indexName)

Parameters

oidName

Name of OID variable that is being declared as a sequence. This oidName must have been declared by a previous
DeclareVar command with oidType of SEQUENCE.

indexName

Name of OID variable that will form an index to this sequence. It must have been declared by a previous
DeclareVar command with dataType of BYTE.

Note: The dataType of indexName must be BYTE. All sequence variables must also be declared as dynamic.

Result

If compiled successfully, this command will declare given oidName as a dynamic variable.

Pre-Condition

A given oidName must have been declared using previous DeclareVar command with oidType of SEQUENCE.

Example

These commands declare a Trap table called TRAP_RECEIVER consisting of four columns:

• TRAP_RECEIVER_ID

• TRAP_ENABLED

• TRAP_RECEIVER_IP

• TRAP_COMMUNITY

Any row in this table can be accessed using TRAP_RECEIVER_ID as an index.

$DeclareVar(TRAP_RECEIVER_ID, BYTE, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.1)
$DynamicVar(TRAP_RECEIVER_ID, 1)
$SequenceVar(TRAP_RECEIVER_ID, TRAP_RECEIVER_ID)

$DeclareVar(TRAP_RECEIVER_ENABLED, BYTE, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.2)
$DynamicVar(TRAP_RECEIVER_ENABLED, 2)
$SequenceVar(TRAP_RECEIVER_ENABLED, TRAP_RECEIVER_ID)

$DeclareVar(TRAP_RECEIVER_IP, IP_ADDRESS, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.3)
$DynamicVar(TRAP_RECEIVER_IP, 3)
$SequenceVar(TRAP_RECEIVER_IP, TRAP_RECEIVER_ID)

$DeclareVar(TRAP_COMMUNITY, ASCII_STRING, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.4)
$DynamicVar(TRAP_COMMUNITY, 4)
$SequenceVar(TRAP_COMMUNITY, TRAP_RECEIVER_ID)
 2003 Microchip Technology Inc. DS00870A-page 27

AN870
AgentID

This command assigns a previously declared OID variable of type OID as an Agent ID for this SMNP Agent. OID
variable defined to be Agent ID must be supplied in SNMPNotify function to generate Trap.

Status

Optional; required only if application needs to generate Trap(s).

Syntax

$AgentID(oidName, id)

Parameters

oidName

Name of OID variable that is being declared as a sequence. This oidName must have been declared by a previous
DeclareVar command with oidType of OID.

id

An 8-bit identifier value to identify this Agent ID variable.

Note: The data type of oidName must be OID. oidName must be declared static.

Result

If compiled successfully, this command will declare given oidName as a dynamic variable.

Pre-Condition

The given oidName must have been declared using a previous DeclareVar command with oidType of OID. It must
also have been declared static using a previous StaticVar command.

Example

The following command sequence declares the Agent ID for this SNMP Agent:

$DeclareVar(MICROCHIP, OID, SINGLE, READONLY, 43.6.1.2.1.1.2)
$StaticVar(MICROCHIP, 43.6.1.4.1.17095)
$AgentID(MICROCHIP, 255)
DS00870A-page 28  2003 Microchip Technology Inc.

AN870
MICROCHIP MIB COMPILER
(mib2bib)

In addition to the source code for the SNMP Agent, the
companion file archive for this application note includes
a simple command line compiler for 32-bit versions of
Microsoft® Windows®. The compiler, named “mib2bib”
(“management information base to binary information
base”), converts the Microchip MIB script into a binary
format compatible with the Microchip SNMP Agent. It
accepts Microchip MIB script in ASCII format and gen-
erates two output files: the binary information file
snmp.bib and the C header file mib.h. The binary file
can be included in a Microchip File System (MPFS)
image.

The complete command line syntax for mib2bib is:

mib2bib [/?] [/h] [/q] <MIBFile>
[/b=<OutputBIBDir>] [/I=<OutputIncDir]

where:

/? Displays command line help.

/h Displays detail help for all script commands.

/q Overwrites existing “snmp.bib” and “mib.h” files.

<MIBFile> is the input MIB script file.

<OutputBIBDir> is the output BIB directory where
snmp.bib should be copied. If a directory is not
specified, the current directory will be used.

<OutputIncDir> is the output Inc directory where
mib.h should be copied. If a directory is not specified,
the current directory will be used.

For example, the command:

mib2bib MySNMP.mib

compiles the script MySNMP.mib and generates the
output files snmp.bib and mib.h in the same directory.

In contrast, the command:

mib2bib /q MySNMP.mib /b=WebPages

compiles the script file MySNMP.mib and overwrites
the existing output files. Additionally, it specifies that
the file snmp.mib is located in the subdirectory
“WebPages”. Because it isn’t specified, mib.h is
assumed to be in the current directory.

If compilation is successful, mib2bib displays the statis-
tics on the binary file, including the number of OIDs and
the Agent ID, as well as the output file size. A typical
display following a successful run is shown in Example 3.

The MIB compiler is a simple rule script compiler. While
it can detect and report many types of parsing errors, it
does have these known limitations:

• All command lines must be written in single line.
• All command parameters must immediately end

with either a comma (‘,’) or right parenthesis. For
example, $DeclareVar(myOID,
ASCII_STRING , …) will fail because the
ASCII_STRING keyword is not immediately
followed by a comma.

• All numerical data must be written in decimal
notation.

mib2bib reports all errors with a script name, line num-
ber, error code and actual description of error. A list of
errors, along with their explanations, is provided in
Table 1.

EXAMPLE 3: TYPICAL OUTPUT DISPLAY FOR AN mib2bib COMPILATION
C:\MCHPStack\Source>mib2bib /q snmp.mib /b=WebPages
mib2bib v1.0 (May 27 2003)
Copyright (c) 2003 Microchip Technology Inc.

Input MIB File : C:\MCHPStack\Source\snmp.mib
Output BIB File: C:\MCHPStack\Source\WebPages\snmp.bib
Output Inc File: C:\MCHPStack\Source\mib.h

BIB File Statistics:

 Total Static OIDs : 9
 Total Static data bytes: 129
 Total Dynamic OIDs : 11
 (mib.h entries)
 Total Read-Only OIDs : 4
 Total Read-Write OIDs : 7

 Total OIDs : 20

 Total Sequence OIDs : 4
 Total AgentIDs : 1
===
 Total MIB bytes : 302
 (snmp.bib size)
 2003 Microchip Technology Inc. DS00870A-page 29

AN870
TABLE 1: mib2bib RUN-TIME ERROR CODES

Error Description Reason

1000 Unexpected end-of-file found End-of-file was reached before end of command.

1001 Unexpected end-of-line found End-of-line was reached before end of
command.

1002 Invalid escape sequence detected; only ‘,’, ‘\’, ‘(‘, or’)’ may
follow ‘\’

All occurrences of ‘,’, ‘(‘, ’)’, ‘\’ must be preceded
by ‘\’.

1003 Unexpected empty command string received Command does not contain any parameter.

1004 Unexpected right parenthesis found Right parenthesis was found in place of a param-
eter.

1005 Invalid or empty command received Command does not contain sufficient
parameters.

1006 Unexpected escape character received A ‘\’ character was detected before or after
parameters were expected.

1007 Unknown command received

1008 Invalid parameters: expected $DeclareVar(oidName,
dataType, oidType, access, oid)

1009 Duplicate OID name found Specified OID name is already in use.

1010 Unknown data type received Data type keyword does not match one of
allowed keywords.

1011 Unknown OID type received OID type keyword does not match one of
allowed keywords.

1012 Empty OID string received

1013 Invalid parameters: expected $DynamicVar(oidName,
id)

1014 OID name is not defined

1015 Invalid OID ID received - must be between 0-255 inclusive

1016 Invalid parameters: expected $StaticVar(oidName,
value)

1017 Invalid parameters: expected $SequenceVar(oidName,
index)

1018 Current OID already contains a static value This OID has already been declared static.

1019 Invalid number of index parameters received All SequenceVar must include only one index.

1020 OID of sequence type cannot contain static data All sequence OID variables must be dynamic.

1021 This is a duplicate OID or the root of this OID is not the
same as previous OID(s), or this OID is a child of a
previously defined OID

All OID string must contain same root OID.

1022 Invalid index received: must be BYTE data value All sequence index OID must be of data type
BYTE.

1023 Invalid OID access type received: must be “READONLY” or
“READWRITE”

1024 Current OID is already assigned an ID value Current OID is already declared as dynamic.

1025 Duplicate dynamic ID found Current OID is already declared as dynamic with
duplicate ID.

1026 No static value found for this OID Current OID was declared static but does not
contain any data.

1027 No index value found for this OID Current OID was declared as sequence but does
not contain any index.

1028 OID data scope (dynamic/static) is not defined Current OID was declared but was not defined to
be static or dynamic.
DS00870A-page 30  2003 Microchip Technology Inc.

AN870
1029 Invalid data value found Data value for current OID does not match with
its data type.

1030 Invalid parameters: expected $AgentID(oidName, id)

1031 Only OID data type is allowed for this command AgentID command must use OID name of OID
data type.

1032 This OID must contain static OID data AgentID command must use OID name of static
data.

1033 This OID is already declared as an Agent ID Only one AgentID command is allowed.

1034 An Agent ID is already assigned Only one AgentID command is allowed.

1035 OID with READWRITE access cannot be static An OID was declared READWRITE and made
static.

1036 OID of OID data type cannot be dynamic Current version does not support OID variable of
data type OID.

1037 This OID is already declared as dynamic

1038 This OID is already declared as static

1039 This OID does not contain Internet root. Internet root of '43'
must be used if this is Internet MIB

All internet OIDs must start with ‘43’. This is a
warning only and will not stop script generation.

1040 Given value was truncated to fit in specified data type An OID was declared as BYTE or WORD but the
value given in StaticVar exceeded the data
range.

1041 Given string exceeds maximum length of 127 All OCTET_STRING and ASCII_STRING must
be less than 128.

1042 Invalid OID name detected. OID name must follow standard
'C' variable naming convention.

All OID names must follow ‘C’ naming conven-
tion as these names are used to create ‘define’
statements in mib.h file.

1043 Total number of dynamic OIDs exceeds 256 This version supports total dynamic OIDs of 256
only. All dynamic OID IDs must range from
0-255.

TABLE 1: mib2bib RUN-TIME ERROR CODES (CONTINUED)

Error Description Reason
 2003 Microchip Technology Inc. DS00870A-page 31

AN870
BIB Format

The binary image of the MIB generated by the compiler
is an optimized form of a modified binary tree. The core
SNMP module reads this information from the MPFS
image and uses it to respond to remote NMS requests.

A BIB image consists of one or more node or OID
records. A parent node is stored first, followed by its
left-most child. This structure is repeated until the leaf
nodes of this tree are reached. The second left-most
child of the original parent is then stored in the same
manner, and the process is repeated until the entire
tree is stored.

Each record consists of several fields defined below.
The format of a single BIB record takes the form:

<oid>, <nodeInfo>, [id], [siblingOffset], [distantSibling-
Offset], [dataType], [dataLen], [data], [{IndexCount,
<IndexNodeInfo>, <indexDataType>}]…

Some fields indicated by angle brackets (“< >”) are
always present; other fields in square brackets (“[]”)
are optional depending on characteristics of the current
node. The IndexCount, IndexNodeInfo and
indexDataType fields, delimited with braces (“{ }”), are
optional but always occur together. The siblingOffset
and distantSiblingOffset are 16 bits wide; all other
fields are 8 bits wide.

The oid field is the 8-bit OID value.

The nodeInfo field is an 8-bit data structure with each
bit serving as a flag for a different node feature.

The id field is the 8-bit variable ID for the node as defined
by the MIB script command DynamicVar. This field is
only defined for leaf nodes where bIsIDPresent = 1. A
leaf node is one that does not have any child (i.e.,
bIsParent = 0).

The siblingOffset field contains the offset (with respect
to beginning of the BIB image) to the sibling node
immediately to its right. Here we define a sibling as a
node that shares the same parent node; a parent is the
linked node immediately above it. This is defined only if
bIsSibling is ‘1’.

The distantSiblingOffset field contains the offset to a
distant sibling. This is present only if bIsDistantSibling
is ‘1’. A distant sibling is defined as a leaf node that
shares an ancestor (more than one level up) with
another leaf node. In other words, for any given node
either siblingOffset or distantSiblingOffset will be
defined but not both at once.

The dataType field specifies the data type for this node.
This is defined only for leaf nodes (bIsParent = 0). The
supported data types are shown in the following table.

The dataLen field defines the length of constant data. It
is defined only for a leaf node with bIsConstant = 1 (i.e.,
a static node).

The data field contains the actual data bytes. As above,
only leaf nodes with bIsConstant = 1 (static nodes) will
have this field.

The IndexCount field contains the index number for this
node. This is defined only if this node is of the
sequence type (bIsSequence = 1). Since only one
index is allowed in this version, this value (when
defined) will always be ‘1’.

The IndexNodeInfo field is an 8-bit data structure that
works like the nodeInfo field; individual bit definitions
are the same. This is defined only if this node is of the
sequence type (bIsSequence = 1).

The indexDataType field defines the data type of the
index node; it works identically to the dataType field
and uses the same definitions. This is defined only if
this node is of the sequence type (bIsSequence = 1).

Bit Name When Set (= 1)

0 blsDistantSibling Node has distant sibling

1 blsConstant Node has constant data

2 blsSequence Node is sequence

3 blsSibling Node has a sibling

4 blsParent Node is a parent

5 blsEditable Node is writable

6 blsAgentID Node is an Agent ID variable

7 blsIDPresent Node contains ID

Hex Value Data Type

00 BYTE

01 WORD

02 DWORD

03 OCTET_STRING

04 ASCII_STRING

05 IP_ADDRESS

06 COUNTER32

07 TIME_TICKS

08 GAUGE32

09 OID
DS00870A-page 32  2003 Microchip Technology Inc.

AN870
DEMO SNMP AGENT APPLICATION

To better demonstrate the abilities of the SNMP Agent,
the companion archive file for this application note
includes a complete demo application. Using
Microchip’s PICDEM.net™ demonstration board as a
hardware platform, it allows the user to control the
board in real-time. Key features of the demo include:

• Implements a complete MIB defined in ASN.1
syntax for use with NMS software

• Provides access to simple variables, such as
LEDs and push button switches

• Illustrates read/write access to a multi-byte
ASCII_STRING variable

• Implements run-time configurable Trap table
• Illustrates read/write access to a four-column
Trap table

• Implements DHCP to obtain automatic IP address
and other configuration parameters

Programming the PICDEM.net Board for
the Demo SNMP Application

To run the demo application, it is necessary to have
a HEX file. One option is to use one of the supplied
demo files: either DemoSNMPAgent.hex or
HtDemoSNMPAgent.hex. For evaluation purposes,
these two files are essentially the same. Note,
however, that DemoSNMPAgent.hex was built using
the Microchip C18 compiler, while
HtDemoSNMPAgent.hex was built using the Hitech
PICC 18 C Compiler. If you need to rebuild the project,
simply open the appropriate demo project and rebuild it
using MPLAB® 6.x and an appropriate compiler.

If you need to recreate the demo project from the
ground up, make sure that following files and options
are included:

• DemoSNMPAgent.c

• Delay.c

• SNMP.c

• MAC.c

• ARP.c

• ARPTsk.c

• IP.c

• UDP.c

• ICMP.c

• DHCP.c

• MPFS.c

• Xeeprom.c

• Helpers.c

• Tick.c

• Xlcd.c

• C18Cfg.c (if using Microchip C18 compiler)

• 18f452.lkr (or other appropriate linker script
file if using Microchip C18 compiler)

The demo SNMP application requires that the following
four symbols be defined. You may define them either
on the compiler command line, or in the StackTsk.h
header file:

• MPFS_USE_EEPROM

• STACK_USE_DHCP

• STACK_USE_ICMP

• STACK_USE_SNMP_SERVER

Once a HEX file is built or selected, follow the standard
procedure for your device programmer when program-
ming the microcontroller. Make sure that the following
configuration options are set:

• Oscillator: HS
• Watchdog Timer: Disabled

• Low Voltage Programming: Disabled
• Background Debug: Disabled

When the programmed microcontroller is installed on
the PICDEM.net demo board and powered up, the sys-
tem LED should blink to indicate that the application is
running. The LCD display will show:

DemoSNMP v1.0

on the first line (the version number may differ depend-
ing on the release level of the application), and either a
configuration message or an IP address on the second
line.
 2003 Microchip Technology Inc. DS00870A-page 33

AN870
Once programmed, the demo application may still need
to be configured properly before it is put on a real net-
work. The instructions below are specific to Microsoft
Windows and the HyperTerminal terminal emulator;
your procedure may vary if you use a different
operating system or terminal software.

1. Program a PIC18 microcontroller as noted
above, and install it on the PICDEM.net board.

2. Connect the PICDEM.net board to an available
serial port on the computer using a standard
RS-232 cable.

3. Launch HyperTerminal (Start > Programs >
Accessories).

4. At the “Connection Description” dialog box,
enter any convenient name for the connection.
Click “OK”.

5. At the “Connect To” dialog box, select the COM
port that the PICDEM.net board is connected to.
Click “OK”.

6. Configure the serial port connected to the
PICDEM.net board:
• 19200 bps,
• 8 data bits, 1 STOP bit and no parity
• no flow control
Click “OK” to initiate the connection.

7. Apply power to the board while holding the S3
switch, or press and hold both the RESET and
S3 switches; then, release the RESET switch.
The LCD display shows the message:

DemoSNMP v1.0

Board Setup…

(The version number may differ depending on
the release level of the application). Release S3.

The Configuration menu appears in the terminal
window:

MCHPStack SNMP Agent
Demo Application v1.0
(Microchip TCP/IP Stack 2.20, <DATE>

1. Change board serial number.

2. Change default IP address.

3. Change default gateway address.

4. Change default subnet mask.

5. Enable DHCP and IP Gleaning.

6. Disable DHCP and IP Gleaning.

7. Download MPFS image.

8. Save & Quit.

Enter a menu choice (1-8):

8. Select each of the items that need to be config-
ured and enter the new values. Select item 8 to
save the changes and exit configuration; the
new addresses are saved to the data EEPROM.
The application exits Configuration mode and
runs the SNMP Agent.

Connecting to an Ethernet Network

When running the SNMP demo application, the
PICDEM.net board can be directly connected to an
Ethernet network with no other modifications. Of
course, the IP configuration must be compatible with
that of the network. By default, the demo application
uses these values for configuration:

• IP Address: 10.10.5.15
• Gateway Address: 10.10.5.15
• Subnet Mask: 255.255.255.0

Even if the IP address is compatible, the gateway and
mask may not be. If changes are required, there are
several ways to go about it.

AUTOMATIC CONFIGURATION WITH DHCP

If the network uses DHCP configuration, no additional
work is needed. When the board is connected to the
network and powered up, it will be assigned an IP con-
figuration by the DHCP server. During this process, the
LCD display shows the message:

DCHP/Gleaning...

After several seconds, the display shows the assigned
IP address, for example:

100.100.100.1 1

The actual IP address displayed is the assigned
address of the board. The number on the far right indi-
cates the number of times the DHCP lease has been
renewed. This is shown for informational purposes
only.

Depending on how the network has been configured,
the PICDEM.net board’s IP address may change after
being powered down for an extended period (i.e., the
board’s DHCP lease has expired and the old address
has been taken by another device). Always use the IP
address currently displayed to communicate with the
board.

PRE-DEFINED NETWORK CONFIGURATIONS

Some networks may be “hard configured”; that is, each
device has an address that has been manually
assigned by the network administrator. In these cases,
the PICDEM.net board should be configured manually
before attaching it to the network with the IP con-
figuration provided by the administrator. Refer back to
"Programming the PICDEM.net Board for the Demo
SNMP Application" (page 33) for details.
DS00870A-page 34  2003 Microchip Technology Inc.

AN870
SETTING THE IP ADDRESS WITH IP
GLEANING

If the board is connected to the network and only
requires a change of IP address, IP gleaning can be
used. This method is best suited to configure the IP
address but not the gateway or subnet mask.

To use IP gleaning, the MAC address of the device
must be known. This is always a 6-byte hexadecimal
number of the format “xx-xx-xx-xx-xx-xx”. For
PICDEM.net boards, the MAC is always
00-04-A3-00-nn-nn, where “nn-nn” is the serial number
of the board in hexadecimal format. Thus, a board with
serial number 1234 (or 04D2h) has a MAC address
00-04-A3-00-04-D2.

Once the MAC address and new IP address of the
device are determined, the address is determined by
resetting the device, then issuing from a remote termi-
nal the arp and ping commands. Continuing with the
example above, if we wanted to assign the previously
mentioned board the new IP address of 10.10.5.50, we
would send the commands:

> arp -s 10.10.5.50 00-04-a3-00-04-d2

> ping 10.10.5.50

A successful ping response indicates that the IP
address has been changed.

Downloading the MPFS Demo Image

The Microchip File System (MPFS) allows users to
store binary image information for Stack related com-
ponents in memory. MPFS is discussed in more detail
in AN833, “The Microchip TCP/IP Stack”. The software
utility for creating MPFS binary images is included in
the companion files for both that application note as
well as this one.

Users can store their MIB information (in BIB format) in
memory using MPFS. The SNMP demo application
includes an MPFS binary image named mpfsimg.bin
which contains the MIB in binary format.

If an MPFS image is to be stored in an external serial
EEPROM, it must either be preprogrammed with the
MPFS image (via a device programmer) or down-
loaded from another application. The Web Server
demo implements a simple MPFS download routine
which accepts an MPFS binary file from a terminal
emulator using the Xmodem protocol.

To download the binary MPFS file:

1. If not already done, set up the PICDEM.net
board for configuration (see “Programming the
PICDEM.net Board for the Demo SNMP
Application”, steps 1 through 7).

2. At the Configuration menu, type ‘7’ to start the
MPFS download. You should see the “Ready to
download...” message and the left User LED
(D6) should be blinking approximately twice per
second.

3. From the HyperTerminal “Transfer” menu, select
“Send File…”. In the “Send File” dialog box,
browse to the directory containing the file
“mpfsimg.bin” and select it. Select “Xmodem”
as the protocol.

4. Click “Send”. Data transfer should start automat-
ically. The User LED will blink as fast as data is
received from the computer.

5. When the file is completely transferred, press ‘8’
to exit the Configuration mode.

The SNMP Agent is now ready to run with the
Microchip MIB.
 2003 Microchip Technology Inc. DS00870A-page 35

AN870
Using NMS Software with the SNMP
Agent and Microchip MIB

The demo application includes an MIB definition file
written in ASN.1 syntax. This file, mchp.mib, defines
the SMI for the PICDEM.net board’s private Microchip
MIB; it is also the basis for the MIB in the MPFS image.
Figure 8 shows the full tree view of the MIB.

Any commercial or non-commercial NMS software that
is ASN.1 compatible should be able to read and com-
pile it. Once it is loaded, you can use the NMS software
to display the Microchip MIB and communicate with the
demo application.

FIGURE 8: STRUCTURE OF THE PRIVATE MICROCHIP MIB IN THE DEMO APPLICATION

Microchip
(17095)

product(1) setup(2) control(3)

name(1) version(2) date(3)

trapTable(1)

trapEntry(1)

trapReceiverNumber(1) trapEnabled(2) trapReceiverIPAddress(3) trapCommunity(4)

ledD5(1)

ledD6(2)

pushButton(3)

analogPot0(4)

analogPot1(5)

lcdDisplay(6)
DS00870A-page 36  2003 Microchip Technology Inc.

AN870
The MIB definition in the demo application allows
real-time I/O and management of these features on the
PICDEM.net board:

• Trap receiver information

• Switch LEDs D5 and D6 on and off
• Read the status of push button S3
• Read two analog potentiometer values

• Write a message of up to 16 characters to the first
line of the on-board LCD display

PRODUCT SUBTREE

This subtree provides product related information, such
as name, version and date. Its OIDs are listed in
Table 2.

Trap TABLE SUBTREE

This subtree is an example of how an Agent would
remember and accept a Trap configuration as set by
remote NMS. This is a table consisting of four columns.
The size of this table is limited to 2 entries, as defined
by TRAP_TABLE_SIZE in the source file
DemoSNMPAgent.c. Once a Trap table entry is cre-
ated with TrapEnabled set (= 1), the PICDEM.net
board will generate a Trap whenever a push button
switch is pushed.

The OIDs for this subtree are listed in Table 3.

CONTROL SUBTREE

This subtree provides real-time I/O control of the
PICDEM.net board. The OIDs are listed in Table 4.

TABLE 2: PRODUCT SUBTREE AND ASSOCIATED OIDs

TABLE 3: Trap TABLE SUBTREE AND ASSOCIATED OIDs

TABLE 4: CONTROL SUBTREE AND ASSOCIATED OIDs

OID Name Access/Data Type Purpose

Name Read only, String Board name

Version Read only, String Version number string

Date Read only, String Release data (month, year)

OID Name Access/Data Type Purpose

TrapReceiverNumber Read only, Integer Index to this table

TrapEnabled Read-Write, Integer Enables this entry to receive Trap
1 = Enabled
0 = Disabled

TrapReceiverIPAddress Read-Write, IP Address IP address of NMS that is interested in
receiving Trap

TrapCommunity Read-Write, String with length of
8 characters

Community name to be used when
sending Trap to this receiver

OID Name Access Type Purpose

LedD5 Read-Write, Integer Switch on/off LED D5:
0 = On
1 = Off

LedD6 Read-Write, Integer Switch on/off LED D6:
0 = On
1 = Off

PushButton Read only, Integer Read status of push button switch S3:
1 = Open
0 = Closed

AnalogPot0 Read only, Integer Read 10-bit value of potentiometer AN0

AnalogPot1 Read only, Integer Read 10-bit value of potentiometer AN1

LcdDisplay Read-Write, 16 char. long String Writes first line of on-board LCD
 2003 Microchip Technology Inc. DS00870A-page 37

AN870
Experimenting with the Demo Agent
Application

You may add any number of static OIDs to the MIB
without making any changes to the demo application’s
source file (DemoSNMPAgent.c). After adding the new
OIDs to the script file, create a new BIB file with the
mib2bib compiler. Include this file in the MPFS image
and download the new image into the EEPROM.

If you want to add a dynamic OID to the demo, you
must change the DemoSNMPAgent.c source file. Cor-
responding changes will also need to be made to the
logic in the SNMPGetVar, SNMPGetNextIndex and
SNMPSetVar callback functions. Also, you will need to
recompile the MIB script file; the new header file,
mib.h, will contain the new dynamic OIDs. Once this
is all done, you can build the new project and
reprogram the microcontroller along with the
EEPROM.

Users who are already familiar with the Microchip
TCP/IP Stack and its accompanying HTTP server can
incorporate the web server pages and the MIB for the
SNMP Agent into a single MPFS image. (You will need
to ensure that you have enough room in the EEPROM
for everything, of course.) The process assumes that
you have already installed the files for the Stack, and
the files for the web pages are in the “WebPages”
directory.

First, generate your BIB image as before (page 29) but
use the command line:

mib2bib /q snmp.mib /b=WebPages

This writes snmp.bib to the directory “WebPages”
(the header file, mib.h, will be written to its default
directory).

Now, generate the MPFS image with the command:

mpfs WebPages mpfsimg.bin

This includes all files in “WebPages” into a single
MFPS image, including the BIB file you just created.
Note that the existing version of mpfsimg.bin will be
overwritten in the process.

MEMORY USAGE

The total amount of memory used for the SNMP Agent
depends on the compiler and optimization level
selected. At the time of this publication (July 2003), the
fully optimized size for the SNMP module using
Microchip’s C18 compiler is 2819 words (5638 bytes) of
program memory and global RAM of 28 bytes. Data
EEPROM is not required.

Note that the SNMP module may require the selection
of certain modules in order to successfully build the
complete SNMP Agent. Inclusion of these modules will
increase overall memory requirements.

CONCLUSION

The SNMP Agent presented here provides another
protocol option for the Microchip TCP/IP Stack.
Together with the Stack and the user’s application, it
provides a compact and efficient over-the-network
management agent than can run on any of the PIC18
8-bit microcontrollers. Its ability to run independently of
an RTOS or application makes it versatile, while its abil-
ity to handle up to 256 OIDs and an unlimited number
of static OIDs makes it flexible.

REFERENCES

J. Case, M. Fedor, M. Schoffstall and J. Davin, “A
Simple Network Management Protocol (SNMP)”, RFC
1157. SNMP Research, Performance Systems Interna-
tional and MIT Laboratory for Computer Science, May
1990.

N. Rajbharti, AN833, “The Microchip TCP/IP Stack”
(DS00833). Microchip Technology Inc., 2002.

A. S. Tanenbaum, Computer Networks (Third Edition).
Upper Saddle River NJ: Prentice-Hall PTR, 1996.

W. R. Stevens, TCP/IP Illustrated, Volume 1: The
Protocols. Reading MA: Addison-Wesley, 1994.
DS00870A-page 38  2003 Microchip Technology Inc.

AN870
APPENDIX A: SOURCE CODE FOR
THE SNMP AGENT

Because of their size and complexity, complete source
code listings for the software discussed in this applica-
tion note are not provided here. A complete archive file
in .zip format is available with all the necessary
source and support files for the following:

• Microchip SNMP Agent
• Microchip MIB Script Compiler (mib2bib)

• Demo Application for SNMP Agent and the
PICDEM.net Demonstration Board

• MPFS Image Builder

Also available is the complete source file archive that
accompanies AN833, “The Microchip TCP/IP Stack”.
This includes all necessary source and support files for
the Stack itself, as well as the MPFS Image Builder and
the demo Web Page Server. These files are a require-
ment for any development with the Microchip SNMP
Agent.

Both of these archive files may be downloaded from the
Microchip corporate web site at:

www.microchip.com
 2003 Microchip Technology Inc. DS00870A-page 39

AN870
NOTES:
DS00870A-page 40  2003 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical
components in life support systems is not authorized except
with express written approval by Microchip. No licenses are
conveyed, implicitly or otherwise, under any intellectual
property rights.
DS00870A-page 41
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and
PowerSmart are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL
and The Embedded Control Solutions Company are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

Accuron, Application Maestro, dsPICDEM, dsPICDEM.net,
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-
Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo,
PowerMate, PowerTool, rfLAB, rfPIC, Select Mode,
SmartSensor, SmartShunt, SmartTel and Total Endurance are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2003, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
 2003 Microchip Technology Inc.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

DS00870A-page 42  2003 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338

Phoenix
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966
Fax: 480-792-4338

San Jose
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950
Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100
Fax: 86-10-85282104
China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599
China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060
China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393
China - Shunde
Room 401, Hongjian Building
No. 2 Fengxiangnan Road, Ronggui Town
Shunde City, Guangdong 528303, China
Tel: 86-765-8395507 Fax: 86-765-8395571
China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205
India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062
Japan
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934
Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910
France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands
P. A. De Biesbosch 14
NL-5152 SC Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

07/28/03

WORLDWIDE SALES AND SERVICE

	Introduction
	Preview: How to Build the snmp Agent
	FIGURE 1: Overview of the SNMP Agent Development Process

	SNMP Overview
	FIGURE 2: Location of SNMP in the TCP/IP Protocol Stack
	SNMP Terminology
	Network Management Station (NMS)
	FIGURE 3: Overview of the SNMP Model

	Managed Node or SNMP Agent
	Management Information Base (MIB)
	FIGURE 4: Generic Structure of Management Information (SMI)
	FIGURE 5: Example of an Actual SMI (Partial Internet Subtree)

	Object Identifier (OID)

	Abstract Syntax Notation (ASN) Language
	EXAMPLE 1: Typical ASN.1 Description of a variable

	Binary Encoding Rules (BER)
	FIGURE 6: Generic BER Format (Top) and an example of BER Encoding (Bottom)

	Protocol Data Unit (PDU)
	FIGURE 7: PDU Formats for Get/Set and Trap PACKETS

	Microchip SNMP Agent APIs
	Describing the MIB with Microchip MIB Script
	Microchip MIB Script Commands
	EXAMPLE 2: Partial Listing of a Microchip MIB (Text) File

	Microchip MIB Compiler (mib2bib)
	EXAMPLE 3: Typical Output Display for an mib2bib Compilation
	TABLE 1: mib2bib rUN-TIME eRROR cODES�
	BIB Format

	Demo SNMP Agent Application
	Programming the PICDEM.net Board for the Demo SNMP Application
	Connecting to an Ethernet Network
	Automatic Configuration with DHCP
	Pre-defined Network Configurations
	Setting the IP Address with IP Gleaning

	Downloading the MPFS Demo Image
	Using NMS Software with the SNMP Agent and Microchip MIB
	FIGURE 8: Structure of the Private Microchip MIB in the Demo Application
	Product subtree
	Trap Table subtree
	Control subtree
	TABLE 2: Product subtree and Associated OIDs
	TABLE 3: Trap table subtree and Associated OIDs
	TABLE 4: Control subtree and Associated OIDs

	Experimenting with the Demo Agent Application

	Memory Usage
	Conclusion
	References
	Appendix A: Source code for the SNMP Agent
	Worldwide Sales and Service

	Worldwide Sales and Service

